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1. Introduction

Small-x QCD evolution, historically based on DGLAP [1] and BFKL [2] dynamics, has

been widely investigated in the past years [3 – 9], leading to a better understanding of

the two approaches just mentioned and to robust resummed predictions for the gluon

density and splitting function [10 – 17]. There is now a remarkable consensus [18] among
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various resummation approaches on the resulting gluon evolution kernel, and a satisfactory

comparison of some of them to experimental data [15, 19].

The basic idea underlying the progress of the resummation approaches just mentioned,

lies in the observation [10] that the BFKL kernel embodies an infinite number of subleading

contributions which are collinear singular. These terms are parametrically large and need

to be taken into account in order to achieve consistency with the renormalization group

(RG). The techniques for incorporating such terms differ in detail according to the various

authors, but lead eventually to similar results.

However, all approaches developed so far limit themselves to a consistent resummation

scheme only for the evolution of the gluon density. The quark sector has been treated

in a more dichotomous manner. On one hand its contribution to the gluon evolution has

been accounted for through the qq̄ contribution to the next-to-leading-log x (NLx) BFKL

kernel — since this has unresummed collinear-singular parts, it breaks consistency with

the RG. On the other hand quark-sea distributions and correspondingly the Pqq and Pqg

splitting functions have been obtained using k-factorization of the qq̄ dipole [5] in the

DIS factorization scheme (as in [19]) or using the MS scheme results of [8] (as in [15]).

Our aim in this paper is to provide a resummation approach in which instead both a RG-

consistent quark contribution to the evolution and the extraction of quark distributions can

be provided within a unified framework. To make this possible we shall devise a resummed

small-x evolution scheme in a coupled matrix form, so as to treat gluons and quarks on

the same footing, and we shall work in a collinear factorization scheme that is as close as

possible to a predetermined one, e.g. the MS scheme.

Our matrix approach, in the collinear limit, has the advantage that it complies auto-

matically with the matrix factorization of the integrated partonic densities in the singlet

evolution, and thus is able to incorporate the known low-order anomalous dimensions for

any value of ω = N − 1, the moment index. On the other hand, in the high-energy limit,

the (gauge-invariant) unintegrated partonic densities are well defined by k-factorization

around different values of ω. To be precise, the gluon unintegrated density is defined

around ω = 0 and the quark around ω = −1. Therefore, in the leading high energy region

— that is around ω = 0 — we are able to include the known LLx+NLx BFKL kernel in

the gluon channel only, thus leaving the quark entries somewhat unconstrained from the

k-factorization standpoint.

Note however that assuming a BFKL framework in matrix form is a demanding require-

ment, because k-factorization implies resummation formulae for the anomalous dimension

matrix up to NLx level. Therefore, incorporating both exact low-order anomalous dimen-

sions (say, in the MS scheme) and NLx expressions (from the exact BFKL kernel) imposes

on our matrix kernel some nontrivial consistency relations expressing the requirement that

collinear and high-energy schemes do not conflict with each other. They are discussed in

detail in the following, and we find that they are satisfied in the MS scheme up to NLO

level, while they are marginally violated at NNLO, by small (NLx) terms in the gq entry

of relative order nf/N2
c . For this reason we restrict ourselves, in this paper, to the NLO-

NLx level and in particular do not make use of the higher-order NLx MS transformation

derived [8] for the remaining (qq, qg, gg) entries. This means that, starting at NNLO, our
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splitting functions will be in some matrix scheme which is not the MS scheme. This should

not be considered a major drawback, since what matters is that a consistent scheme be

provided for both splitting and coefficient functions rather than that the scheme be specif-

ically MS. Furthermore the higher order scheme-change effects of [8], when studied in the

single-channel case [14], were found to be modest, comparable to renormalization scale

uncertainties

Besides the NLO-NLx information mentioned above, we impose the general require-

ment of consistency with the renormalization group in both ordered and anti-ordered con-

figurations of exchanged partonic momenta k’s. This is best expressed in the γ ↔ 1+ω−γ

symmetry of the kernel, where γ is conjugated to log k2. We enforce this symmetry by the

so-called consistency constraint [20 – 22] which introduces an ω-dependence in the (leading)

kernel, so as to resum those parts [9] of the higher order BFKL kernels which are required

by the RG. This procedure follows previous papers [10, 11] and is used in particular for

the gg matrix element of the kernel.

Despite all such requirements, there is a considerable ambiguity in our approach which

is tied up to the matrix structure, because the γ and ω dependences of the various matrix

elements of the kernel are constrained only to a limited extent by the collinear and high-

energy limits. We therefore introduce in section 2 some further requirements, mostly related

to the pole structure of the kernel in the γ and ω variables, by requiring it to have at most

simple poles. This assumption is quite natural in the case of ω → 0 because of the BFKL

limit, and follows by the ω-expansion method [10] in the γ → 0 case. The leading twist pole

structure of the kernel at lowest order in αs is basically K ∼ Γ0 [(1/γ) + 1/(1 + ω − γ)],

where Γ0 denotes the LO DGLAP anomalous dimension matrix. The full kernel to second

order in αs is constructed in sections 2 and 3 according to the requirements stated above.

It also contains running coupling effects at the scales suggested by the NLx BFKL kernel

and by the RG.

In the frozen αs case we calculate in section 4 the resulting anomalous dimension

matrix, and its eigenvalues γ±(αs, ω). The leading eigenvalue at high energies, γ+, contains

important resummation effects in the αs/ω variable. We also obtain resummation formulae

for Γqg and Γgq, the latter being specific to our matrix approach and not directly obtained

on the basis of the NLx BFKL kernel only. In section 5 we present results for the effective

eigenvalue (or characteristic) functions ω = χ±(αs, γ) as inverse functions of the anomalous

dimensions, and for the hard Pomeron exponent ωs(αs). In the case with running coupling

described in section 6, we provide the resummed DGLAP splitting function matrix in x

space, obtained by the numerical deconvolution method proposed in [23, 11] and generalized

to the matrix case. Details of the matrix kernel and of the anomalous dimension expressions

are left to appendices A-C.

2. Basis of matrix formulation

The general purpose of this paper is to provide integro-differential matrix equations for un-

integrated parton distributions, which interpolate between DGLAP evolution equations [1]

in the hard scale variable log k2 and the high-energy BFKL evolution equation [2] in the
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rapidity-like variable log 1/x. Despite the high-energy and collinear factorization con-

straints, the above interpolation is subject to considerable ambiguities, due to the following

facts:

(a) Off-shell, unintegrated densities are defined in a gauge-invariant way by k-factoriza-

tion of gluon and quark exchanges around different values of the moment index ω ≡

N−1, namely ω = 0 for the gluon and ω = −1 for the quark.1 Therefore, in the high-

energy region — that is around the leading value ω = 0 — only some effective gluon

equation (which incorporates the high-energy quark contributions) is constrained by

the BFKL limit, whose kernel has been calculated perturbatively [2, 4 – 7]. This

makes the interpolation of the kernel to generic ω values more ambiguous for the

quark entries.

(b) The collinear limit constrains the matrix kernel for both quarks and gluons, but in

a factorization-scheme dependent way, and only in the strongly ordered region of

transverse momenta · · · ≫ k2
1 ≫ k2

2 ≫ · · · and in the anti-ordered one. This limit

only restricts the singularities of the kernel in the variable γ (conjugated to log k2) so

as to reproduce the low order anomalous dimension matrix. In addition, the collinear

↔ anti-collinear relationship implies the existence of a γ ↔ 1+ω−γ symmetry, whose

form is however quite general, depending again on the factorization-scheme.

2.1 Basic criteria for the kernel construction

In order to tame the ambiguities of the off-shell continuation mentioned above, we shall use

a few basic criteria which — we shall argue — can be consistently imposed and correspond

to a factorization-scheme choice for both high-energy and collinear limits.

Let us refer to a matrix kernel Kab(αs, ω), acting on k-space, such that the parton

Green’s function is given by

Gab(ω;k,k0) = [1 − K(αs, ω)]−1
ab (k,k0) , (a, b = q, g) . (2.1)

In the frozen αs limit, the kernel matrix elements are diagonalised in γ-space and given

by the eigenvalue function Kab(αs, ω, γ). Our first basic assumption is that in the collinear

limit γ → 0 and ω fixed, the matrix kernel K shows simple poles only, in the form of a

γ-expansion

K =
1

γ
K

(0)(αs, ω) + K
(1)(αs, ω) + γ K

(2)(αs, ω) + O
(
γ2

)
. (2.2)

Here, the 1/γ singularity is natural because of the DGLAP limit, and would be the only

term present in a pure evolution equation in log k2. In fact, it implies (section 2.2) that

the one-loop anomalous dimension matrix Γ0(ω) is given by K
(0)
0 (ω), the coefficient of the

1/γ pole of lowest order in αs (while the higher order terms Γn involve K
(1), K

(2), . . . as

well).

1This is because of the spin 1/2 of the quark exchange, which leads to an energy dependence of the

cross-section of type s−1 at high energies. For alternative approaches to the definition of unintegrated

densities see [22, 24].
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Note however that higher powers of αs/γ could have been present also,2 and do actually

occur in the normal formulation of the NLx BFKL kernel [6, 7]. By eq. (2.2) we explicitly

exclude such possibility in our matrix kernel, while the BFKL kernel will be recovered by

proper algebraic manipulations (section 3).

Our second assumption is analogous to (2.2) with ω and γ interchanged. In the high-

energy limit of ω → 0 with γ kept fixed we require simple pole singularities in the ω-

expansion

K =
1

ω
0K(αs, γ) + 1K(αs, γ) + ω 2K(αs, γ) + O

(
ω2

)
, (2.3)

where, in addition,

0Kqq = 0 = 0Kqg . (2.4)

The 1/ω singularity is natural because of the BFKL limit and would be the only term

present in a pure evolution equation in log 1/x. It implies that the eigenvalue function of

the LLx BFKL kernel is given by χ0(γ) ∼ 0K0(γ), the coefficient of the 1/ω singularity

of lowest order in αs (while the NLx BFKL kernel, discussed in section 3, involves 1K(γ)

also).

Therefore, higher order singularities in ω — which are present in the anomalous di-

mension at higher order — will be obtained (section 4) by using the rough anomalous

dimension relation γ ≃ ᾱs/ω in the subleading γ-dependence. The fact that only 0Kgq and

0Kgg possess the 1/ω singularity is related to the fact that in usual factorization schemes [8],

only Γgq and Γgg show a LLx dependence on the αs/ω variable.

There is a third important assumption, which deals with the relationship between

collinear and anti-collinear orderings of exchanged transverse momenta. Both orderings

are to be incorporated in our off-shell formulation and simple kinematical considerations

show that the variable conjugated to log k2 in the reverse ordering is 1 + ω− γ. Therefore,

values of γ and 1 + ω − γ must be related by some symmetry, and we shall assume, out of

simplicity,

Kab(γ, ω) = Kab(1 + ω − γ, ω) . (2.5)

It is perhaps useful to recall the formal basis for the symmetry (2.5). Let us write the

k-factorization formula for the A + B → X differential cross-section in the form [25]

dσAB

d2k d2k0
=

∫
dω

2πi

(
s

kk0

)ω

hA(k, ω)G(k,k0;ω)hB(k0, ω) , (k ≡ |k|) , (2.6)

where we have lumped in the A,B superscripts the dependence on the hard scales QA, QB

of the process. Then the change of energy-scale from kk0 to, say, k2 can be incorporated

by the change of kernel

K
[k2](k,k′;ω) =

(
k

k′

)ω

K
[kk0](k,k′;ω) , (2.7)

2For instance, the rough LLx anomalous dimension relation γ ≃ ᾱs/ω could be replaced in the subleading

ω-dependence, thus producing higher powers of αs/γ.
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or, at frozen αs, by the ω-dependent shift [7, 9] of the corresponding eigenvalue functions 3

χ[k2](γ, ω) = χ[kk0](γ − ω
2 , ω) . (2.8)

On the other hand, in the one-channel case — namely when one considers only gluon

dynamics — the A ↔ B symmetry of σAB implies the k ↔ k′ symmetry of the kernel

K(k,k′;ω) and the γ ↔ 1−γ symmetry of the eigenvalue functions χ[kk0](γ, ω). Therefore,

at energy-scale k2, the γ ↔ 1 + ω − γ symmetry of eq. (2.5) holds for χ[k2](γ, ω), whose

superscript will be dropped from now on.

In the matrix case, the thorough discussion of section 2.3 shows that the collinear ↔

anti-collinear symmetry of the matrix kernel is expected to have the more general form

K(1 + ω − γ, ω) = S(ω)KT (γ, ω)S−1(ω) . (2.9)

Therefore, eq. (2.5) is obtained by choosing the similarity transformation S so as to have

SK
T S−1 = K , (2.10)

and represents yet another restriction of our off-shell scheme.4

In the following we shall show in more detail how to construct the matrix kernel so as

to satisfy the known collinear/high-energy limits with LO-LLx accuracy (sections 2.2, 2.3)

and NLO-NLx accuracy (section 3), within the scheme restrictions provided by assump-

tions (2.2), (2.3), (2.5). We note from the start that eqs. (2.2) and (2.3) impose consistency

relations on the anomalous dimensions, which show up in a novel NLx resummation formula

for Γgq, to be discussed in detail in sections 4.2 and 4.3.

2.2 Form of kernel at LO-LLx accuracy

In order to discuss the above features in more detail in the frozen αs limit, we introduce

the triple expansion

K(αs, γ, ω) ≡
∞∑

n,m,p=0

pK
(m)
n α̂n+1γm−1ωp−1 , α̂ ≡

αs

2π
, (2.11)

where pK
(m)
n are 2×2 matrices in the a = q, g indices, and we note that m, p ≥ 0, consistently

with the simple pole assumption of eqs. (2.2), (2.3). We also use the notation K
(m)(αs, ω),

pK(αs, γ), K
(m)
n (ω) and pKn(γ) to mean partially resummed coefficients, as already done

before. In this paper we limit ourselves to two terms (n = 0, 1) in the frozen αs-expansion,

which will be able to accommodate the LLx and NLx BFKL kernels. However, running

3We use the symbol χ to denote eigenvalue functions of kernels considered in or related to previous

works on small-x resummations in the gluon-channel. We keep the symbol K to denote both kernels and

eigenvalue functions specifically designed for this matrix formulation. Note also that the χ’s are perturbative

coefficients of expansions in ᾱs ≡ αsCA/π, therefore differing in normalization by a factor (2CA)−(n+1) from

their K counterparts in eq. (2.11), because α̂ = αs/2π.
4The choice of eq. (2.5) must be supplemented by a corresponding choice of impact factors in order to sat-

isfy the symmetry for observable cross-sections. In the realistic NLO-NLx case the similarity transformation

S in eq. (2.10) is expected to be an operator in k-space also.
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coupling effects will be introduced by various scale choices for the various terms (section 3.3)

and this implies in general an infinite series when expanding around a fixed scale.

Let us first show how to construct K0 so as to be consistent with the collinear and

high-energy limit at LO-LLx accuracy. We denote by Γ the anomalous dimension matrix,

with the expansion

Γ(ω) ≡

∞∑

n=0

α̂n+1Γn(ω) , (2.12)

where we recall the small-ω behaviour (Tf ≡ Trnf = nf/2)

Γ0(ω) =




O (ω)
4Tf

3
+ O (ω)

2CF

ω
+ O (1)

2CA

ω
+ O (1)


 , (2.13)

and, in the MS scheme,

Γ1(ω) =
1

9ω




40TfCF 40Tf CA

9CF CA − 40TfCF (12CF − 46CA)Tf


 , (2.14)

with the two eigenvalues

γ+,0 =
2CA

ω
+ O (1) , γ+,1 = −

2Tf

9ω

(
10CA −

13

CA

)
+ O (1) (2.15)

γ−,0 = −
4TfCF

3CA
+ O (ω) . (2.16)

We then write the generalised BFKL equation for the unintegrated parton densities

Fi(k;ω) in the form

F = KF + F source , (2.17)

where the source F source is local in k-space. It is then straightforward (cf. section 4.1 and

appendix A) to derive, for frozen αs, DGLAP type equations for the integrated densities

fi(Q
2;ω) ≡

∫ Q2

d2k Fi(k;ω) , (i = q, g) (2.18)

of type

ḟi ≡
∂fi

∂ log Q2
=

∑

j=q,g

Γijfj , (2.19)

where

Γ0 = K
(0)
0 (2.20a)

Γ1 = K
(0)
1 + K

(1)
0 K

(0)
0 (2.20b)

Γ2 = K
(0)
2 + K

(1)
1 K

(0)
0 + K

(1)
0 K

(0)
1 + K

(2)
0

(
K

(0)
0

)2
+

(
K

(1)
0

)2
K

(0)
0 , (2.20c)
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and so on. This identification relies on the expansion (2.11), which in turn relies on the

assumed single γ-pole structure of (2.2), see appendix A.

We note that this procedure implies that the part of the anomalous dimensions, pro-

portional to K
(i) with i > 0, at a given order of perturbation theory can be generated from

the lower orders.

Eqs. (2.20) can be used to constrain recursively the γ → 0 singularities of K0, K1, . . . for

a given set of low order anomalous dimensions, for instance in the MS scheme. In particular,

it determines K
(0)
0 = Γ0, as noticed after eq. (2.2), but does not fix K

(1)
0 , which is therefore

a scheme-changing parameter. At LO-LLx level, we choose the parameterization

K0(γ, ω) =




Γqq,0(ω)χω
c (γ) Γqg,0(ω)χω

c (γ)

Γgq,0(ω)χω
c (γ) 2CA

ω χω
0 (γ) +

[
Γgg,0(ω) − 2CA

ω

]
χω

c (γ)


 , (2.21)

where 5

χω
0 (γ) ≡ 2ψ(1) − ψ(γ) − ψ(1 + ω − γ) , (2.22)

reduces to the leading BFKL eigenvalue function in the ω = 0 limit (ψ(x) is the Digamma

function), and

χω
c (γ) =

1

γ
+

1

1 + ω − γ
, (2.23)

is a simple interpolation of γ = 0 and 1 + ω − γ = 0 poles. Higher twist terms will be

needed at the NL level in section 3.

Let us note that in eq. (2.21) we have already incorporated assumptions (2.3) and (2.5)

at this level. In fact, the form (2.21) is consistent with eq. (2.3) because of the BFKL limit

of χω
0 in eq. (2.22) and of the absence of 1/ω poles in Kqq and Kqg. Furthermore, the

symmetry (2.5) is present by construction. On the other hand, the simple form of χω
c in

eq. (2.23) and the fact that it appears unchanged in the qq, qg and gq entries and in the

part of the gg entry which has no 1/ω singularities are all “off-shell” features which we

choose for simplicity reasons.

The fact that Kqq and Kgq are proportional to χω
c helps to satisfy the momentum

conservation sum rule. Indeed, since

Γqq,0(ω = 1) + Γgq,0(ω = 1) = Γqg,0(ω = 1) + Γgg,0(ω = 1) = 0 , (2.24)

we obtain

ḟq + ḟg ≡ Fq + Fg = χht Fg , (2.25)

where all quantities are evaluated at ω = 1 and χht is some higher-twist kernel, having

singularities at γ = −1,−2, . . .. It is then easy to show that the sum-rule violation is at

5We will use the ω superscript to denote ω-shifted [11] eigenvalue functions χω(γ) ≡ χL(γ)+χL(1+ω−γ),

χL being the “left projection” of the eigenvalue function χ(γ) = χL(γ)+χL(1− γ) with singularities in the

half-plane ℜ(γ) < 1/2 only.
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abcd

Figure 1: A sequence of splittings going towards smaller x as a → b → c → d, which may be

collinear, anti-collinear or some mixture.

most O
(
α2

s

)
, instead of O (αs).

6 This feature will be improved in section 3 by modifying

the parameterization (2.21) at NLO-NLx level so as to reduce the violation to O
(
α3

s

)
.

2.3 General form of the collinear ↔ anti-collinear symmetry

The role of the symmetry (2.5) in implementing RG properties deserves a special discussion

for the matrix kernel. In fact, its typical effect is to produce two pole terms in γ and 1+ω−γ

(see eq. (2.23)), which are supposed to describe the correct product of Γ-matrices for both

direct and reverse orderings. The situation is pretty clear for collinearly ordered particles.

In fact, referring to figure 1, with x decreasing from right to left we have a sequence of

splitting functions such as

. . . Γdc Γcb Γba . . .

{
xd < xc < xb < xa

kd ≫ kc ≫ kb ≫ ka

(2.26)

describing a going to b, b to c and so on, as predicted from K also. On the other hand,

in the anti-collinear limit the DGLAP splitting functions need to account for the opposite

splittings, b to a, etc.

. . . Γcd Γbc Γab . . .

{
xd > xc > xb > xa

kd ≪ kc ≪ kb ≪ ka

(2.27)

= . . . (ΓT )dc (ΓT )cb (ΓT )ba . . . .

Then, one would naively expect that the anti-collinear pole in the kernel be associated

with ΓT . This seems to work fine as long as we consider a complete chain of anti-collinear

splittings. Problems arise however when trying to join collinear and anti-collinear chains.

Firstly there is an issue of colour factors: the anomalous dimension Γij implicitly includes

a factor Ni for the number of varieties of parton i that can be produced (N2
C − 1 if i is

a gluon, 2nfNC for an (anti)quark). For each exchanged particle in figure 1 that factor

should be included exactly once. In the collinear limit it is included in the branching to the

right of a given exchange (e.g. for b it is included in Γba), while in the anti-collinear limit, as

written in (2.27), it is included to the left (in Γbc). If we are to consider a single evolution

from right to left containing both collinear and anti-collinear splittings we should ensure

that the Ni factors are consistently included to one side, for example in the branching to

6In the single-channel case (fq = 0) eq. (2.25) would imply that the sum rule violation is higher-twist

only. In the matrix case, a higher twist component is expected on top of the perturbative component

discussed here.
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the right of the exchange. One then needs to correct the splitting function (ΓT )ij for an

anti-collinear i → j splitting by a factor Nj/Ni.

The second issue that arises relates to high-energy factorization. For each exchanged

gluon we have a factor 1/ω. In a sequence of collinear branchings that 1/ω factor is

associated with the splitting function to the right of the gluon exchange (e.g. if b is a gluon

then it is included in Γba), while for anti-collinear branchings it comes from the splitting

function to the left (i.e. from Γbc). This causes problems if we have an anti-collinear splitting

to the left of a gluon exchange and a collinear one to the right, since both will include a 1/ω

factor for the intermediate exchanged gluon. However it is necessary for the gluonic part

of our Green function to be consistent with high-energy factorization, which systematically

assigns an exchanged gluon’s 1/ω divergence to the larger-x part of the diagram, i.e. to the

right of the exchanged gluon in the collinear limit. Therefore in the case of an anti-collinear

branching we should multiply (ΓT )ij by a factor fi/fj where fg = 1/ω, so as to ensure that

j is never associated with a 1/ω factor, while i has it when i is a gluon. Note that fq is

arbitrary (other than that it should be a non-zero constant for ω → 0) since high-energy

factorization is not defined for quarks around ω = 0 — we shall discuss its choice below.

The outcome of this discussion is that colour factor and the high-energy factorization

corrections can be combined by introducing a similarity transformation matrix

S =




2nfNCfq(ω) 0

0 (N2
C − 1)fg(ω)


 , (2.28)

and defining a ‘refactored’ splitting function matrix Γ for anti-collinear splittings in an

evolution that will combine both collinear and anti-collinear splittings:

Γ = SΓTS−1 =




Γqq
nf

CF

fq(ω)
fg(ω)Γgq

CF

nf

fg(ω)
fq(ω)Γqg Γgg


 . (2.29)

A matrix kernel will therefore have collinear and anti-collinear structure of the form

K ≃
Γ

γ
+

Γ

1 + ω − γ
, (2.30)

and will satisfy the collinear ↔ anti-collinear symmetry in the general form (2.9). The fact

that the diagonal entries (in particular the gg element) of Γ and Γ are identical is consistent

with our expectation that the single-channel (nf = 0) limit should coincide with BFKL,

which is symmetric in γ ↔ 1 + ω − γ. The structure of colour factors and 1/ω ensures

that chains containing collinear and anti-collinear splittings will have the expected sets of

colour factors and overall 1/ω factors.

Note finally that we can further specify S so as to satisfy the symmetry in the

form (2.5). Since
Γqg,0

Γgq,0
=

2nfTr

CF

ω

ω + 3
, (2.31)
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we can simplify eq. (2.30) by exploiting the arbitrariness of fq(ω) and setting it to

fq(ω) =
2Tr

ω + 3
=⇒ Γ = Γ , (2.32)

thus providing, at leading level, a fully symmetric collinear structure

K ≃ Γ

(
1

γ
+

1

1 + ω − γ

)
, (2.33)

as assumed in eq. (2.5).

3. The kernel at NLO-NLx accuracy

3.1 General structure of K0

Let us recall that, while the LO anomalous dimension matrix and the LLx expression of

Γgg are factorization-scheme independent, the NLO, NLx expressions do depend on the

scheme (except possibly for the eigenvalue γ+ in the frozen αs limit). This opens up

the possibility of constructing the kernel so as to reproduce the NLO, NLx anomalous

dimensions in a given scheme, say MS scheme. However, we have to comply with the

restrictions (2.2), (2.3), (2.5), in particular the requirements of a simple γ-pole structure

at fixed ω, a simple ω-pole at fixed γ, and absence of 1/ω singularity in Kqq and Kqg.

This means, at NLO, that the α2
s/ω terms of Γqq and Γqg cannot be reproduced by an

explicit 1/ω term in K1, but should result from the γ-dependence of Kqq,0 and Kqg,0, where

K
(1)
0 , K

(2)
0 , . . . are free scheme choice parameters. In other words, we have to adjust the

subleading γ-dependence of K0 so as to reproduce the known MS anomalous dimensions at

NLx level in the form

ω Γqg,1 ∼ (K
(1)
0 )qg for ω → 0 . (3.1)

The above discussion shows that we have to change the parameterization (2.21) at

next-to-leading level so as to allow a more general subleading γ-dependence. We choose

the following one

K0(γ, ω) =




Γqq,0(ω)χω
c (γ) Γqg,0(ω)χω

c (γ) + ∆qg(ω)χω
ht(γ)

Γgq,0(ω)χω
c (γ) Γgg,0(ω)χω

c (γ) +
2CA

ω

[
χω

0 (γ) − χω
c (γ)

]


 , (3.2)

where χω
ht(γ) is a higher-twist kernel possessing the symmetry (2.5), e.g.

χω
ht(γ) =

2

3

(
1

1 + γ
+

1

2 + ω − γ

)
, χ0

ht(0) = 1 , (3.3)

and ∆qg is an ω-dependent coefficient which we require to be regular for ℜ(ω) > −1 and

vanishingly small as ω → ∞, e.g.7

∆qg(ω) ≡ δqg ∆(ω) ≡ δqg · 3

(
1

1 + ω
−

2

2 + ω
+

1

3 + ω

)
, ∆qg(0) = δqg . (3.4)

7This particular choice is motivated by the fact that the z-space function ∆qg(z) ∼ (1 − z)2 rapidly

vanishes for z → 1 (cf. eq. (C.6)), thus not disturbing the large-x behaviour of the model.
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The form (3.2) allows one to choose (K
(1)
0 )qg so as to reproduce the known NLx expres-

sions (2.13) and (2.14) of Γqq and Γqg in the MS scheme, up to order α2
s/ω. Note that the

logic is here reversed with respect to the DIS scheme, in which (K0)qg is directly calculated

by k-factorization (see [8]) and NLx resummation formulae for Γqq and Γqg are derived.8

By the γ → 0 behaviour

K0 →
1

γ
K

(0)
0 + K

(1)
0 , (3.5)

we derive, from eq. (2.20) for Γ1, that δMS
qg = 8Tf/9.

In more detail, the NLx coefficient 0Γqg,1 ≡ limω→0 ω Γqg,1, according to eq. (2.20b) is

given by

0Γqg,1 = 0

[
K

(0)
1 + K

(1)
0 K

(0)
0

]
qg

=
[
0K

(0)
1 + 0K

(1)
0 1K

(0)
0 + 1K

(1)
0 0K

(0)
0

]
qg

. (3.6)

By expanding the matrix products in terms of their matrix elements and by taking into

account the conditions (2.4), only the last term in the r.h.s. of eq. (3.6) does not vanish,

yielding

0Γqg,1 = (1K
(1)
0 )qg (0K

(0)
0 )gg =

[
Γqg,0(0)cc(0) + δqgχ

0
ht(0)

]
2CA = 2CA

[
4

3
Tf + δqg

]
, (3.7)

where we used the explicit expressions (3.3), (3.29) and (3.30b). The MS-scheme value

0Γqg,1 = 40TfCA/9 of eq. (2.14) is then recovered provided

δMS
qg =

8Tf

9
. (3.8)

Note that the corresponding expression for 0Γqq,1 involves (0K
(0)
0 )gq = CF

CA
(0K

(0)
0 )gg, thus re-

specting the colour charge relation ΓNLx
qq,n = CF

CA
ΓNLx

qg,n (n ≥ 1) which is apparent in eq. (2.14).

One could repeat the above procedure in other factorisation schemes as well. In the

DIS scheme, e.g., the value 0Γqg,1 = 52TfCA/9 is recovered by setting

δDIS
qg =

14Tf

9
. (3.9)

3.2 BFKL limit and general structure of K1

Having fixed Γqq and Γqg at NLO-NLx level, the remaining constraints (exact NLO anoma-

lous dimension matrix and exact BFKL kernel at NLx level) are fixed by a proper choice

of K1. Because of the expansion in eq. (2.3)

K =
1

ω
0K(αs, γ) + 1K(αs, γ) + ω 2K(αs, γ) + O

(
ω2

)
, (3.10)

where 0K has only gg and gq entries, the resolvent

(1 − K)−1 = (1 − 1K)−1

[
1 −

1

ω
0K(1 − 1K)−1 + O (ω)

]−1

(3.11)

8We could also add further orders in the NLx expansion of γqa (e.g., NNLO, as in section 6 for the NLO+

version), but we do not address the problem of incorporating the full NLx series in the MS scheme [8], as

explained previously in the Introduction.
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has the gg matrix element proportional to a pure log 1/x evolution form, with the kernel

KBFKL = ᾱsK
BFKL
0 + ᾱ2

sK
BFKL
1 =

[
0K(1 − 1K)−1

]
gg

= [0K + 0K 1K]gg + O
(
ᾱ3

s

)
, (3.12)

where ᾱs ≡
αsNc

π . We thus arrive at the identification

(2CA)KBFKL
0 = (0K0)gg , (2CA)2KBFKL

1 = (0K1 + 0K0 1K0)gg , (3.13)

which parallels eq. (2.20) for the perturbative expansion, with the difference that it concerns

the gg entry only, as is appropriate to the k-factorization of gluon exchange. Eq. (3.13) is

used — as in the single-channel case [11] — to derive (0K1)gg from the known expression

of the NLx BFKL kernel9 KBFKL
1 and of the K0 kernel (3.2). Explicitly

(0K0 1K0)gg = 2CAχ0(2CAχ̇0 + Aggχc) + 2CF χc(Γqg,0χc + δqgχht)
∣∣∣
ω=0

(3.14)

χ̇0(γ) ≡ ∂ωχω
0 (γ)

∣∣
ω=0

= −ψ′(1 − γ) , (3.15)

where Agg(ω) ≡ Γgg,0(ω)−2CA/ω is the regular part of the gg anomalous dimension. This

result reduces to the corresponding one-channel [11] nf = 0 subtraction 2CAχ0(2CAχ̇0 +

A
[nf =0]
gg χc) after setting Γqg = ∆qg = 0.

We encounter at this point a consistency relation on the factorization scheme for Γ1,

due to the fact that we want to incorporate both Γ1 and KBFKL
1 in a kernel satisfying

the simple-pole assumptions of section 2.1, as better discussed in section 4.3. Note in fact

that, given K0, eq (2.20) determines K
(0)
1 in terms of Γ1 and eq. (3.13) determines (0K1)gg

in terms of KBFKL
1 . Therefore,

[
0K

(0)
1

]
gg

— the γ-pole part with the 1/ω singularity — is

determined in two independent ways, which should provide the same result, in the form

0

[
Γgg,1 − (K

(1)
0 K

(0)
0 )gg

]
= 0(γ+,1) − (0K0 1K0)

(0)
gg , (3.16)

where we have used the fact that the simple-pole part of KBFKL
1 predicts the NLx part of

γ+,1, that is

0(γ+,1) = (2CA)2
(
KBFKL

1

)(0)
. (3.17)

We show in section (4.3) that the consistency equation (3.16) is identically satisfied, pro-

vided 0Γqg,1 ≃
[
K

(1)
0

]
qg

, as assumed in eq. (3.1). Therefore, both DIS and MS schemes

satisfy eq. (3.16) and can be accommodated by a proper matrix kernel at NL level.

More precisely, we start from the “Ansatz”

K1(γ, ω) = Γ̃1(ω)χω
c (γ) + (2CA)2

(
1

ω
−

2

1 + ω

)(
0 0

0 χ̃ω
1 (γ)

)
. (3.18)

where:

9Of course, running coupling contributions to KBFKL
1 — explicitly considered in section 3.3 — are to be

subtracted out.
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(i) the function χ̃ω
1 (γ) at ω = 0 is equal to

χ̃ω=0
1 ≡ χ̃1 =

0Kgg,1

(2CA)2
= KBFKL

1 −

[
0K0 1K0

]
gg

(2CA)2
(3.19)

[see eq. (3.28) for an explicit expression] and is extrapolated to generic ω values by

the ω-shift [11] procedure of left and right projections as follows

χ̃ω
1 (γ) = [χ̃1]L(γ) + [χ̃1]L(1 + ω − γ) , (3.20)

so as to satisfy the symmetry (2.5);

(ii) in order to minimize momentum sum rule violations, we have added to the high-

energy pole 1/ω in front of χ̃ω
1 a low-energy term −2/(1 + ω): their sum vanishes at

ω = 1;

(iii) the Γ̃1(ω) matrix is fixed by matching K
(0)
1 +K

(1)
0 K

(0)
0 to the known NLO MS splitting

functions (cf. eq. (2.20b)):

Γ̃1(ω) = Γ
(MS)
1 (ω) − K

(1)
0 K

(0)
0 − (2CA)2

(
1

ω
−

2

1 + ω

)(
0 0

0 χ̃
(0)
1

)
, (3.21)

χ̃
(0)
1 being the coefficient of the simple pole at γ = 0 of χ̃ω

1 (γ). We note that χω
c in

eq. (3.18) is again chosen for simplicity reasons according to the symmetry (2.5).

The final form of the next-to-leading matrix kernel is then

K1 =
(
Γ1 − K

(1)
0 K

(0)
0

)
χω

c + (2CA)2
(

1

ω
−

2

1 + ω

)(
0 0

0 χ̃ω
1 − χ̃

(0)
1 χω

c

)
. (3.22)

3.3 Running coupling features

We shall choose the running coupling scales of our kernel as in [11]. We thus associate

αs(q
2) (q ≡ k − k′) to the LLx BFKL kernel χω

0 (γ), and αs(k
2
>) (k> ≡ max{k, k′}) to all

other ones. The choice of the intermediate gluon momentum transfer is suggested by the

NLx BFKL kernel itself, which contains the beta-function dependent term

χrun(γ) = −
b

2

(
χ′

0 + χ2
0

)
, b =

11

12
−

Tf

3CA
, (3.23)

(quoted for a renormalisation scale choice µ2 = k2), corresponding to the k-space kernel

Krun(k,k′) = −b

[
log

q2

k2
KBFKL

0 (k,k′)

]

reg

(3.24)

where the regularization procedure is explained in [11]. Since the term in eq. (3.24) is

accounted for by expanding αs(q
2) up to NL order, the expression in eq. (3.23) should be

– 14 –



J
H
E
P
0
8
(
2
0
0
7
)
0
4
6

subtracted out from the NL kernel considered before. More precisely, the kernel KBFKL
1 in

eq. (3.13) is meant to have the eigenvalue

χBFKL
1 =

[
χ1 −

1

2
χ0χ

′
0

]
+

b

2

(
χ′

0 + χ2
0

)
, (3.25)

where the expression in square brackets is the eigenvalue function at energy-scale k2, ob-

tained by the ω-expansion of eq. (2.8), and χ1 is the customary NL eigenvalue [6, 7] at

energy-scale kk0, given by the expression

χ1(γ) = −
b

2
[χ2

0(γ)+χ′
0(γ)]−

1

4
χ′′

0(γ)−
1

4

(
π

sin πγ

)2 cos πγ

1−2γ

[
3+

(
1+

2Tf

C3
A

)
2+3γ(1−γ)

(1+2γ)(3−2γ)

]

+

(
67

36
−

π2

12
−

5Tf

9CA

)
χ0(γ) +

3

2
ζ(3) +

π3

4 sin πγ

−

∞∑

n=0

(−1)n
[
ψ(n + 1 + γ) − ψ(1)

(n + γ)2
+

ψ(n + 2 − γ) − ψ(1)

(n + 1 − γ)2

]
. (3.26)

It follows that the overall kernel has the structure 10

K(k,k′;ω) = α̂(q2)
2CA

ω

(
0 0

0 Kω
0

)
+ α̂(k2

>)




Γqq,0K
ω
c Γqg,0K

ω
c + ∆qgK

ω
ht

Γgq,0K
ω
c

(
Γgg,0 −

2CA

ω

)
Kω

c


 (3.27)

+ α̂2(k2
>)

[(
Γ1−K

(1)
0 K

(0)
0

)
Kω

c +(2CA)2
(

1

ω
−

2

1+ω

)(
0 0

0 K̃ω
1 − χ̃

(0)
1 Kω

c

)]
.

Kω
0 , Kω

c and Kω
ht are the k-dependent kernels corresponding to the characteristic functions

χω
0 , χω

c and χω
ht respectively, and their explicit expressions in (x, k)-space are provided in

appendix. C (cf. eqs. (C.7), (C.4) and (C.5)). The eigenvalue of the gg entry of K1 at

ω = 0, thanks to eq. (3.25) and to the subtraction procedure in eq. (3.14), is provided by

the expression

χ̃ω=0
1 (γ) = χ1(γ) +

b

2

[
χ′

0(γ) + χ2
0(γ)

]
+

1

2
χ0(γ)

π2

sin2(πγ)

− χ0(γ)
Agg(0)/2CA

γ(1 − γ)
−

CF /CA

γ(1 − γ)

[
Γqg,0(0)/2CA

γ(1 − γ)
+

δqg/CA

(1 + γ)(2 − γ)

]
, (3.28)

which then acquires the ω-dependent shift, as explained previously. Note that χ̃1 is the

same as that in [11] in the nf = 0 limit, and differs from it by the nf -dependent terms in

Agg, Γqg,0 and ∆qg. Note also that cubic and quadratic poles cancel out in χ̃1, because

of the ω-shift of the collinear poles and of their factorization, which are embodied in our

formalism (cf. sec 4.3).

10Its generalisation to include variable renormalisation scale is constructed as follows: single powers of αs

undergo the transformation α̂(q2) → α̂(x2
µq2)+β0α̂

2(x2
µq2) ln x2

µ and α̂(k2
>) → α̂(x2

µk2
>)+β0α̂

2(x2
µk2

>) ln x2
µ,

with β0 = 2CAb, while quadratic powers of αs are modified as α̂2(k2
>) → α̂2(x2

µk2
>).
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The remaining single poles of Kgg,1 are provided by χ̃
(0)
1 , which is obtained as follows.

Let us introduce the constant (in γ) coefficients cχ of the characteristic functions:

χ0(γ, ω) ≡
1

γ
+ c0(ω) + O (γ) , χc(γ, ω) ≡

1

γ
+ cc(ω) + O (γ) . (3.29)

Then, according to eqs. (2.22), (2.23), we have

c0(ω) = ψ(1) − ψ(1 + ω) , c0(0) = 0 , c′0(0) = −ψ′(1) = −
π2

6
(3.30a)

cc(ω) =
1

1 + ω
, cc(0) = 1 (3.30b)

Note that c0(0) vanishes by virtue of the LLx expansion χ0(γ) = 1/γ + O
(
γ2

)
, in other

words it is a scheme-independent coefficient. On the other hand, all other quantities in

eq. (3.30) are scheme-dependent, i.e., they depend on the particular choice we adopted for

shifting the poles of χ0 and on the definition of χc as in eqs. (2.22), (2.22).

By using the above notation we derive the expansions of the BFKL eigenvalue function

χBFKL
1 (γ) =

1

γ2

(
Agg

2CA
+

CF

CA

Γqg,0

2CA

)
−

1

γ

(46CA − 52CF )Tf

9(2CA)2
+ O

(
γ0

)
, (3.31)

the expansion of the subtraction term in eq. (3.14)

(3.14) =
1

γ2

(
Agg

2CA
+

CF

CA

Γqg,0

2CA

)
+

1

γ

[
c′0 + cc

(
Agg

2CA
+

CF

CA

2Γqg,0

2CA

)
+

CF

CA

δqg

2CA

]
+ O

(
γ0

)

(3.32)

and the expression of the pole term in K1

χ̃
(0)
1 = −

(46CA − 52CF )Tf

9(2CA)2
+ cc

(
11

12
+

(4CA − 16CF )Tf

3(2CA)2

)
−

CF

CA

δqg

2CA
, (3.33)

where all quantities in the three formulas above are evaluated at ω = 0. Note again that

χ̃
(0)
1 satisfies the consistency relation in eq. (3.16), proved in section 4.3.

The remaining expressions used in the previous subsections are easily obtained by the

following detailed formulas

[K
(1)
0 K

(0)
0 ]qq = cc

(
ΓqgΓgq + Γ2

qq

)
+ ∆qgΓgqχht ∼ Γqq,1 ∼

CF

CA
Γqg,1 (3.34a)

[K
(1)
0 K

(0)
0 ]qg = ccΓqg (Γqq + Γgg) + ∆qgΓggχht ∼ Γqg,1 (3.34b)

[K
(1)
0 K

(0)
0 ]gq = Γgq

[
c0

2CA

ω
+ cc (Γqq + Agg)

]
(3.34c)

[K
(1)
0 K

(0)
0 ]gg = c0Γgg

2CA

ω
+ cc [AggΓgg + ΓgqΓqg] ∼ Γgg,1 − (2CA)2

χ̃
(0)
1

ω
, (3.34d)

where χht stands for χω
ht(γ = 0) and ∼ means asymptotic in the ω → 0 limit. From the

above formulas we can compute the high-energy limit of K1

lim
ω→0

ωK1 ≡ 0K1 = (2CA)2

(
0 0

κgqχc(γ) χ̃1(γ)

)
, κgq ≡ CF

CA

(
1
4 −

10Tf

9CA
− c′0 − cc

Agg

2CA

)
.

(3.35)
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The introduction of running coupling may change our expectations on how momentum

conservation is satisfied by our kernel. Since we incorporate NLO anomalous dimensions,

as given by eqs. (3.22), we expect violations at next order, that is at relative order α3
s .

This is also the order at which running coupling effects start to matter in the actual

derivation of anomalous dimensions, being related to a commutator of two values of αs,

evaluated at different scales (cf. appendix A). Therefore, no problems arise at NLO. Since

we do not explicitly consider incorporating NNLO results in this paper, we do not make

an effort to improve energy-momentum conservation at frozen αs. We should add that the

consistency relations on NLx terms which restrict our scheme start imposing a collinear

scheme restriction at order α3
s/ω

2 which is derived in section 4.2 and is violated, even if

marginally, in the MS-scheme.

4. Frozen coupling anomalous dimensions

In this section we want to discuss a number of issues concerning the anomalous dimension

matrix in the case of frozen coupling, in which the whole matrix can be analytically cal-

culated in terms of the kernel matrix elements in (γ, ω)-space. This allows us to compute

the two eigenvalues γ = γ±(αs, ω) and their inverses, the effective eigenvalue functions

ω = χ±(αs, γ), as well as their eigenvectors. We obtain in this way the hard Pomeron

exponent ωs(αs) and the resummation formulae for the matrix elements of the anomalous

dimension matrix. The latter, at a given level of the LLx hierarchy, must be consistent

with the exact low order anomalous dimensions we have used in constructing the kernel,

thus providing consistency relations for the collinear and k-factorization schemes. Here we

find, at NLx level, that such relations are identically satisfied by our construction at NLO,

while they put a nontrivial constraint on the α3
s/ω

2 term of Γgq at NNLO.

4.1 Anomalous dimension matrix

If αs is frozen, the matrix kernel K(k,k′;ω) is scale invarant and its resolvent admits the

γ-representation

G(k,k0;ω) =
1

k2

∫
dγ

2πi

(
k2

k2
0

)γ
1

1 − K(αs, γ, ω)
, (4.1)

where K(αs, γ, ω) is the characteristic function matrix of K(k,k′;ω).

We introduce the eigenvalues η± and eigenvectors u± of K in the usual way

K(γ)u±(γ) = η±(γ)u±(γ) , (4.2)

where the αs- and ω-dependences of all the above quantities are understood. One can then

write the spectral decomposition

K(γ) = η+(γ)Π+(γ) + η−(γ)Π−(γ) , (4.3)

where Π± are the orthogonal projectors on the eigenspaces of K, and are given by

Π+ =
u+ ⊗ v̄+

(v̄+u+)
, Π− =

u− ⊗ v̄−
(v̄−u−)

, (4.4)
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v̄±(γ) being the left-eigenvectors of K satisfying (v̄+u−) = 0 = (v̄−u+) when u’s and v̄’s

are evaluated at the same value of γ.

The behaviour in t-space of G is determined by the γ-poles in eq. (4.1). These poles

are found at γ = γ±(αs, ω) such that

η+(γ+, αs, ω) = 1 , η−(γ−, αs, ω) = 1 (4.5)

and are interpreted as anomalous dimension eigenvalues of G.

By applying a driving term f0 to the Green’s function G, at leading-twist level — i.e.,

taking into account only the two rightmost poles in the half-plane ℜ(γ) < 1/2 obeying

limαs→0 γ± → 0 — one obtains the vector of (integrated) quark and gluon densities
(

fq

fg

)
≡ f =

∑

l∈{+,−}

1

−γl η
′
l(γl)

(
k2

k2
0

)γl

Πl(γl)f0(γl) (4.6)

We want to show that f satisfies the DGLAP-type evolution equation

df

d log k2
= Γf , (4.7)

in terms of a well-defined resummed anomalous dimension matrix Γ. In fact, by inserting

the expression (4.6) into both sides of eq. (4.7), the equality is satisfied provided

[Γ − γlI]Πl(γl)f0(γl) = 0 , (l = +,−) . (4.8)

It might seem that Γ is dependent on the initial condition f0. This is not the case, because

whatever the choice of f0, the projector Πl(γl) projects f0 into a vector proportional to

ul(γl), and eq. (4.8) reduces to

Γul(γl) = γlul(γl) , (l = +,−) , (4.9)

i.e., Γ is the (unique) matrix whose eigenvectors are {u+(γ+), u−(γ−)} relative to the

eigenvalues {γ+, γ−}.

Γ = γ+
u+(γ+) ⊗ v̄+(γ−)

v̄+(γ−) · u+(γ+)
+ γ−

u−(γ−) ⊗ v̄−(γ+)

v̄−(γ+) · u−(γ−)
. (4.10)

In more detail, the eigenvalues γ±(αs, ω) are provided by

det[1 − K(γ±, αs, ω)] = 0 (4.11)

and the eigenvectors are

u+(γ+) =

(
ρ

1

)
, ρ ≡

Kqg(γ+)

1 − Kqq(γ+)
=

1 − Kgg(γ+)

Kgq(γ+)
(4.12)

u−(γ−) =

(
1

−r

)
, r ≡

Kgq(γ−)

Kgg(γ−) − 1
=

Kqq(γ−) − 1

Kqg(γ−)
(4.13)

v̄−(γ+) =
(
1 −ρ

)
, (4.14)

v̄+(γ−) =
(
r 1

)
. (4.15)
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Therefore, the full expression of the anomalous dimension matrix is

Γ =
γ+

1 + rρ

(
ρ

1

)
⊗

(
r 1

)
+

γ−
1 + rρ

(
1

−r

)
⊗

(
1 −ρ

)
(4.16)

=
1

1 + rρ

(
rργ+ + γ− (γ+ − γ−)ρ

(γ+ − γ−)r γ+ + rργ−

)
.

We obtain the relationships

γ+ = Γgg + rΓqg , (4.17)

γ− = Γqq − rΓqg , (4.18)

Γgq = r(Γgg − γ−) . (4.19)

4.2 Resummation formulae

All the above formulas are exact in the frozen coupling case, and do not depend on our

particular assumptions on K. Now, by taking into account the structure of K described in

the previous sections, we compute the anomalous dimension matrix elements at NLx level.

To this purpose, we note that the eigenvalues of K are defined by

η2 − η tr K + det K = 0 (4.20)

and that both trK and det K are of order 1/ω, so that up to NLx level we have

η+ ≃ tr K −
det K

tr K
≃

α̂

ω
(0Kgg,0 + α̂0Kgg,1) + α̂

(
1Kgg,0 +

0Kgq,0 1Kqg,0

0Kgg,0

)
, (4.21)

η− ≃
det K

tr K
≃ α̂

(
1Kqq,0 −

0Kgq,0 1Kqg,0

0Kgg,0

)
. (4.22)

We note that the equation η+ = 1 reduces to the usual BFKL determination of γ+ because

0Kgg,0 can be replaced by ω/α̂ in the NLx term. Furthermore, the equation η− = 1 is

dominated by its γ-pole part, yielding

η− ≃
α̂

γ

(
1Γqq,0 −

CF

CA
1Γqg,0

)
= −

CF

CA

Γqg,0(ω = 0)

γ
= 1 . (4.23)

This provides the lowest order determination of

γ− =
αs

2π
γ−,0 + NNLx = −

CF

CA
Γqg,0(0) + NNLx , (4.24)

so that, up to NLx level only the one-loop term of Γqg contributes and no small-x enhance-

ments are present.

The coefficient r is now calculable from eq. (4.13) and, up to NLx level, we obtain

r =
CF

CA

[
1+

αs

2π
r1+ωr̃1+· · ·

]
, r1 = ccγ−,0+

K
(0)
gq,1

2CF
−

K
(0)
gg,1

2CA
, r̃1 =

Agq

2CF
−

Agg+ CF

CA
Γqg,0

2CA
.

(4.25)
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Note that, since eq. (4.13) is evaluated at γ−, r does not contain 1/ω enhancements and is

generally calculable from fixed order perturbation theory. The coefficient ρ, on the other

hand, is calculated at γ+ (cf. eq. (4.12)), and so contains resummation of NLx terms to all

orders in αs.

Given that γ− and ρ are NLx quantities, it follows that also Γqq and Γqg are NLx.

From the previous equations we obtain the resummation formulae

ΓLLx
gq =

CF

CA
ΓLLx

gg =
CF

CA
γLLx
+ (4.26)

ΓNLx
qg = γLLx

+ ρ = γLLx
+ Kqg(γ+) (4.27)

ΓNLx
qq =

CF

CA

(
ΓNLx

qg − Γqg,0(0)
)

, (4.28)

which are well known [8]. In addition, the matrix kernel predicts

ΓNLx
gq =

CF

CA

[
γNLx
+ − ΓNLx

qq +
αs

2π
r1γ

LLx
+ + ωr̃1γ

LLx
+

]
(4.29)

=
CF

CA

[
ΓNLx

gg +
αs

2π

CF

CA
Γqg,0(0) +

αs

2π

ᾱs

ω
r1 + ᾱsr̃1

]
+ O

(
α4

s

)
.

Note that NLx running coupling contributions are shown in appendix A to start at order

α4
s . The above resummation formula for Γgq is easily checked to be identically valid at

O (αs) and O
(
α2

s

)
. At O

(
α3

s

)
it yields the relation

ΓNLx
gq,2 =

CF

CA
ΓNLx

gg,2 , (4.30)

which characterises the class of schemes described by our matrix formulation, and appears

to be not satisfied in the MS scheme [26],11 even though the violation, of relative order

nf/N2
c , is numerically less than 0.5% for nf ≤ 6. Strictly speaking, this implies that the

MS scheme at NNLO cannot be incorporated in the present matrix approach. However,

one could think of adding the small violation just mentioned by a matching procedure.

4.3 Consistency relations

They arise in general because of the joined requirements of simple ω-poles and γ-poles

imposed on our kernel. For instance, by the γ-pole hypothesis we determine the γ-pole

parts of K1 and K2 by the equations

K
(0)
1 = Γ1 − K

(1)
0 Γ0 , K

(0)
2 = Γ2 − K

(1)
1 Γ0 − K

(1)
0 Γ1 − K

(2)
0 Γ2

0 . (4.31)

These expressions should be consistent with the ω-pole hypothesis so that higher order

poles in ω, possibly occurring in the r.h.s. of eq. (4.31), should cancel out.

Furthermore, by the ω-pole hypothesis, we determine the ω-pole part of Kgg,1 by a

subtraction of the BFKL kernel, as follows:

(
0K1

)
gg

= (2CA)2KBFKL
1 −

(
0K0 1K0

)
gg

. (4.32)

11From eq. (4.29) of ref. [26], by taking into account the difference between our and their normalization

ΓNLx
ab,2 = −Eab

1 /8ω2, it turns out that, in the MS-scheme, ΓNLx
gq,2 = CF

CA

ˆ

ΓNLx
gg,2 −

nf

3ω2

˜

.

– 20 –



J
H
E
P
0
8
(
2
0
0
7
)
0
4
6

Once again, this should be consistent with the γ-pole hypothesis, so that quadratic (and

possibly cubic) γ-poles in KBFKL
1 should cancel out on the r.h.s., and furthermore the

simple pole should be consistent with eq. (4.31), that is

(
0K

(0)
1

)
gg

= (2CA)2K
BFKL (0)
1 −

(
0K0 1K0

)(0)

gg
= (0Γ1)gg − 0

(
K

(1)
0 Γ0

)
gg

. (4.33)

Let us start proving the consistency relation for eq. (4.31). Generally speaking, they

are equivalent to recursive relations on the ω-singularities of Γn or, in other words, to the

resummation formulas proved in section 4.2. For instance, the assumed absence of ω-poles

in
(
K

(0)
n

)
qa

implies the NLx resummation formulas for
(
Γn

)
qa

:

(
Γ1

)
qa

≃
(
K

(1)
0

)
qg 0

(
Γ0

)
ga

,

(
at

α2
s

ω
level

)
(4.34)

(
Γ2

)
qa

≃
(
K

(2)
0

)
qg 0

(
Γ2

0

)
ga

,

(
at

α3
s

ω2
level

)
(4.35)

as predicted by eqs. (4.27), (4.28).

The gq, gg entries are slightly more complicated. At order α2
s/ω, 0K

(0)
gq,1 is determined

by eq. (4.31), so that no consistency condition arises in the gq entry. However, 0K
(0)
gg,1

is already determined by eq. (4.32), so that the consistency condition (4.33) arises. The

latter is verified because the simple-pole part of KBFKL
1 is simply γ+,1 [7], so that eq. (4.33)

reduces to the identity (3.16), which implies, at order α2
s/ω,

γ+,1 − Γgg,1 =
(
0K

(1)
0 1K

(0)
0 + 0K

(0)
0 1K

(1)
0

)
gg

−
(
0K

(1)
0 1K

(0)
0 + 1K

(1)
0 0K

(0)
0

)
gg

=
[
0K

(0)
0 , 1K

(1)
0

]
gg

=
2CF

ω

(
1K

(1)
0

)
qg

, (4.36)

where the r.h.s. reduces, by eq. (4.34), to CF

CA
Γqg,1, as it should.

Furthermore, at order α3
s/ω

2 we have consistency conditions for Γgg,2 and Γgq,2. The

former is identically satisfied, by some algebra similar to eq. (4.36), because γNLx
+,2 = ΓNLx

gg,2 +
CF

CA
ΓNLx

qg,2 as given in eq. (4.17). The latter is instead non trivial and, after a similar algebra,

reduces to

ΓNLx
gq,2 =

CF

CA
ΓNLx

gg,2 , (4.37)

as already proved in eq. (4.30), with the same consequences.

We finally note that cubic and quadratic γ-poles are absent in (4.32) because of the

identity, valid up to order 1/γ2,

(2CA)2KBFKL
1 = (2CA)2

(
χ1 − χrun − 1

2χ0χ
′
0

)

≃
(
0K

(0)
0

)
gg

(
1K

(0)
0

)
gg

+
(
0K

(0)
0

)
gq

(
1K

(0)
0

)
qg

. (4.38)

Here the cubic poles at γ = 0 already cancel out in the l.h.s., because of the 1
2χ0χ

′
0

subtraction needed to switch energy-scale kk0 → k2, due to the ω-shift (2.8). The remaining

quadratic poles are given by the r.h.s., because of normal collinear factorization, and of

absence of 1/γ singularities in χ̇0 at energy-scale k2 (eq. (3.15)).
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5. Characteristic features of the resummed Green’s function

In this section we present numerical results of some phenomenologically relevant quantities

which can be obtained by using the matrix kernel K = α̂K0 + α̂2
K1 developed in the

previous sections. We recall that the final form of K0 and K1 can be found in eqs. (3.2)

and (3.22) respectively, and that the detailed implementation of the running coupling is

found in eq. (3.27).

We state once more that our matrix kernel incorporates exactly the DGLAP and BFKL

properties at NLO and NLx accuracy. However, in order to see the impact of the NLO

contributions and to compare with previous resummation approaches, we will consider also

results obtained from the kernel with only LO anomalous dimensions (but still in NLx

approximation). The corresponding kernel — which we refer to as NLx-LO model — is

built with the same K0 given in eq. (3.2) but with K1 including only the K̃1 term in the gg

entry, as can be read from eq. (3.18) by setting Γ̃1 = 0.

5.1 Hard Pomeron exponent

We shall first investigate the high-energy s → +∞ behaviour of the A+B → X differential

cross section given in eq. (2.6) at fixed and equal value of the two hard scales k2 ≃ k2
0, by

determining the growth exponent (hard Pomeron) ωs in the limit of frozen coupling. In

this limit, we can use the representation (4.1) for the Green’s function G(k,k′;ω) and, by

using the spectral decomposition introduced in section 4.1, we obtain (the αs-dependence

is understood)

dσ(k ≃ k0)

d2k d2k0
=

∑

l∈{+,−}

∫
dγ

2πi

∫
dω

2πi

(
s

kk0

)ω hA(k, ω)Πl

(
γ, ω

)
hB(k0, ω)

1 − ηl

(
γ, ω

) . (5.1)

The ω-integral gets contributions from the singularities (labelled by the index m) of the

integrand at ω = ω̄l,m(γ) due to the vanishing of the denominator

1 − ηl

(
γ, ω̄l,m(γ)

)
= 0 , (5.2)

thus providing

dσ(k ≃ k0)

d2k d2k0
=

∑

l∈{+,−}

∑

m∈Ml

∫
dγ

2πi

(
s

kk0

)ω̄l,m(γ) hA(k, ω̄)Πl

(
γ, ω̄

)
hB(k0, ω̄)

−∂ωηl

(
γ, ω̄

) . (5.3)

In the limit s ≫ kk0 the γ-integral is dominated by the saddle-point γ = γs such that

d

dγ
ω̄l,m(γs) = 0 (5.4)

for the particular values of l and m such that ω̄l,m(γs) is maximum. It turns out that those

values correspond to the leading-twist component of the (l = +)-branch of the eigenvalue

function η+, namely the solutions of η+(γs, ωs) = 1 with γs → 0 for αs → 0. As a result, in

the high-energy limit the cross section has the power-like behaviour

dσ(k ≃ k0)

d2k d2k0
= Cs

(
s

kk0

)ωs

(5.5)
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ω
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NLx-NLO, nf = 4

NLx-NLO, nf = 0

NLx-LO  , nf = 0

1-channel B

Figure 2: Hard Pomeron exponent ωs obtained in the NLx-NLO matrix formulation with nf = 4

(solid blue) and nf = 0 (dotted blue). The one-channel results [11] are also shown (red squares)

and compared to those of the matrix model in NLx-LO approximation with nf = 0 (solid green).

The calculation is done in the fixed coupling case.

where the process dependent coefficient Cs is constant or at most logarithmic in s, and the

growth exponent ωs is determined by the conditions (5.2), (5.4).

We can recast eq. (5.4) into an equivalent relation for the function ∂γηl. In fact, by

taking the total γ-derivative of eq. (5.2) we can express

dω̄

dγ
= −

∂γη

∂ωη
(5.6)

thus obtaining the following conditions for the hard Pomeron exponent:

η+(γs, ωs) = 1 (5.7a)

∂γη+(γs, ωs) = 0 . (5.7b)

The above conditions in turn can be translated into analogous conditions for the determi-

nant of the operator 1 − K. In fact, from the relations

det(1 − K) = (1 − η+)(1 − η−) (5.8a)

∂γ det(1 − K) = −[(1 − η+)∂γη− + (1 − η−)∂γη+] (5.8b)

eqs. (5.7) are equivalent to

det[1 − K(γs, ω̄i)] = 0 (5.9a)

∂γ det[1 − K(γs, ω̄i)] = 0 . (5.9b)

We have numerically solved the implicit equations (5.9) in our matrix formulation in

a range of αs up to 0.4, both at NLx-NLO and NLx-LO accuracy, for two values of nf = 0
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and 4. The results for ωs versus αs are shown in figure 2, where we compare with results

obtained from our previous one-channel approach.

The NLx-LO curve at nf = 0 almost overlaps to the old one-channel result, thus

showing the stability of the matrix formulation and the continuity with the one-channel

approach. In fact, since at nf = 0 the kernel is diagonal, only the gg entry determines

ωs. The small discrepancy is due to: (i) the momentum-conserving factor in front of

χ̃1 in eq. (3.18) (it was a plain 1/ω in the one-channel case); (ii) a non vanishing two-

loop anomalous dimension (only for the low-energy part, actually) (we enforced vanishing

anomalous dimension in the one-channel case). By including the NLO contributions we

obtain a moderate increase of the Pomeron intercept, which slightly diminishes when quarks

are also taken into account.

5.2 Effective characteristic function(s)

As already noted in the previous section, the contributions to the integral representation

of the cross section stem from those values of ω and γ such that

det[1 − K(αs, γ, ω)] = 0 . (5.10)

which provides a relation between the moment index ω and the anomalous dimension

variable γ. Solving eq. (5.10) for either ω or γ defines the effective characteristic function

and its dual effective anomalous dimension

ω = χeff(αs, γ) , γ = γeff(αs, ω) . (5.11)

While in the one-channel case we have only one perturbative branch of those functions,

corresponding to the BFKL eigenvalue function χ+(γ) and to the larger eigenvalue γ+(ω)

of the anomalous dimension matrix, in the matrix formulation we expect two branches.

The second branch corresponds to the smaller eigenvalue γ−(ω) which is dual to a second

effective characteristic function χ−(γ).

In figure 3 we show the two branches of the effective characteristic functions obtained

in the NLx-NLO and NLx-LO cases. We have considered here the asymmetric ω-shift

corresponding to the energy-scale k2, with αs = 0.2. The χ+’s are characterised by the

typical minimum around γ ≃ 0.5 whose value is nothing but ωs(αs). On the other hand,

the χ−’s appear as steeply decreasing functions located around γ . 0 in the region shown

in our plots.

The continuity of the resummation procedure when going from the one-channel to the

two-channel formulation at nf = 0 is illustrated in figure 3a by the overlapping of the

(+)-branch of the NLx-LO curve to the circles corresponding to the one-channel scheme-B

effective eigenvalue function. The NLO terms provide a slight increase of the (+)-branch

in the region 0 < γ < 2, and a small decrease of the (−)-branch at γ < 0. At nf = 0 there

is a crossing point of the two branches at negative γ in either approximations.

The inclusion of quarks removes the crossing (with a mechanism similar to the degen-

erate level splitting in quantum mechanics) causing χ− to be always on the left of χ+, as

can be seen in figure 3b. Quantitatively, the quark contribution lowers both χ+ in the

region around the minimum (compare the two inserts in figure 3) and χ−.
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Figure 3: Effective eigenvalue function obtained in the matrix formulation with full NLx-NLO

accuracy (blue) and with NLx-LO accuracy (green) for nf = 0 (a) and nf = 4 (b). The steeply

decreasing curves on the left side of each plot represent the minus-branches χ
−

, while the curves

with a minimum around γ ≃ 0.5 represent the plus-branches χ+. The red circles reproduce the

one-channel result in scheme B of ref. [11]. The calculation is done at fixed coupling αs = 0.2.

Note the two fixed points at (γ, ω = χeff) = (0, 1) and (2, 1) of the (+)-branches. In the

one-channel case these fixed points corresponds to momentum conservation in the collinear

and anti-collinear limits respectively. In the two-channel formulation they imply that the

anomalous dimension eigenvalue γ+(ω = 1) = 0; however, momentum sum rule is satisfied

provided the corresponding left-eigenvector v̄+ =
(
r 1

)
of the anomalous dimension matrix

(cf. eq. (4.14)) be
(
1 1

)
at ω = 1, i.e., provided r(ω = 1) = 1.

Actually, our matrix model presents a small violation of the momentum sum rule. In
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αs NLx-LO NLx-NLO NLx-LO/α2
s NLx-NLO/α3

s

0.025 0.00019 0.0000031 0.302 0.199

0.050 0.00072 0.0000208 0.287 0.167

0.100 0.00260 0.0001303 0.260 0.130

0.150 0.00534 0.0003437 0.237 0.102

0.200 0.00872 0.0006107 0.218 0.076

Table 1: Estimate of momentum sum rule violation. The quantity γ
−

(1 − r)ρ/(1 + rρ) at ω = 1

has been computed for various values of αs (column 1) in the NLx-LO (column 2) and NLx-NLO

(column 3) schemes. Column 4 (resp. 5) shows that the NLx-LO (NLx-NLO) violation is of order

α2
s (α3

s ).

fact, by exploiting the fact that γ+(ω = 1) = 0 and by using eqs. (2.19) and (4.16) we have

(at ω = 1)

q̇ + ġ =
(
1 1

)
Γ

(
q

g

)
= γ−

1 − r

1 + rρ
(q − ρg) . (5.12)

The computation of the prefactor γ− (1− r)ρ/(1 + rρ) versus αs shown in table 1 gives us

an estimate of the relative amount of momentum non-conservation; the violation is of order

α2
s for the NLx-LO scheme, and of order α3

s for the scheme with NLO terms included.

6. Numerical results with running coupling

In this section we shall present results obtained by solving eq. (2.1) in (x,k)-space, including

a running coupling. The basic structure of the ensuing integral equation follows from

eq. (3.27) and reads (Y ≡ log 1/x)

Gab(Y ; k, k0) = δabΘ(Y )
δ(k2 − k2

0)

π
+

∑

c

∫ 1

x

dz

z

∫
dk′2

[
α̂(q2)δagδgcK0(z; k, k′)

+ α̂(k2
>)Kcoll,ac(z; k, k′) + α̂2(k2

>)K1,ac(z; k, k′)
]
Gcb

(
log

z

x
; k′, k0

)
(6.1)

(the explicit expressions of the kernels K0, Kcoll and K1 in the equation above are given in

appendix C). We shall extract Green functions and splitting functions, using the methods

described in [11, 12, 23]. In both the coupling and the kernels we use a fixed number of

flavours, nf = 4. The coupling runs with a 2-loop β function, and is normalised such that

αs(3GeV) = 0.256. The infrared region of the coupling is regularized by setting it to zero

for scales µ < µ0 = 0.75GeV.

The results that we shall show are those of the model described above (NLx-NLO),

and also those for a model in which the higher twist part of K0,qg has been supplemented

with (symmetric) 1/(1 + γ)2 and 1/(2 + ω − γ)2 terms12 so that not only the α2
s/ω but

also α3
s/ω

2 terms of the qq, qg and gg splitting functions are in the MS scheme.13 We shall

12More precisely, the higher-twist kernel reads χω
ht(γ) = 134

81
(1+γ)−1

−
32
27

(1+γ)−2+[(1+γ) → (2+ω−γ)].
13The gq term is almost in the MS scheme, the only difference being a small Nc-suppressed contribution

of relative order nf/N2
c , corresponding to the violation of eq. (4.37) in the NNLO MS splitting functions.
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αs = 0.15

NLx-NLO
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scheme B
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i=g

i=q

Figure 4: Gluon-induced part of the Green function for the NLx-NLO and NLx-NLO+ models,

compared to the results of [12] (scheme B). For the models of this paper both Ggg and Gqg are

shown. The value chosen for the coupling, αs = 0.15, corresponds to k0 ≃ 20 GeV. The band

indicates the spread in the result for the NLx-NLO model when varying the renormalisation scale

in the range 0.5 < xµ < 2.

denote this second model NLx-NLO+. We shall also compare to results obtained in our

earlier single-channel work [12] (scheme B), where we used a 1-loop coupling, nf = 0 in

the kernel (but nf = 4 in the coupling) and for which the NLO piece of the effective Pgg

splitting function was identically zero.

6.1 Green functions

The Green function for the matrix evolution is itself a matrix in flavour space. Physically

the most interesting part is that involving gluonic sources, and this is shown in figure 4.

The old and new resummations give nearly identical results for the Ggg part of the

result, indicative of the stability of the resummation procedure. Furthermore, the differ-

ences between them are much smaller than renormalisation scale uncertainty, which grows

with Y . The growth with Y of the scale uncertainty can be understood as an indication of

underlying scale dependence of the effective BFKL exponent.

The Gqg channel can be given only within the new resummations. As would be ex-

pected, the quark component is suppressed by a factor ∼ αs compared to the gluon compo-

nent. A consequence of the fact that the quarks are only generated radiatively is the scale

dependence in their normalisation as well as in their growth with Y . We note that the

change induced by the NNLO scheme-dependent higher-twist part of K0,qg (NLx-NLO+

versus NLx-NLO) is small, despite the fact that the region k ∼ k0 that we study is that

most likely to be sensitive to this higher-twist contribution.
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Figure 5: The matrix of NLx-NLO (and NLx-NLO+) splitting functions together with their scale

uncertainty and the NLO splitting functions for comparison. In the gg channel, we also show the

old scheme B result (nf = 0, no NLO contributions, 1-loop coupling) of [11]. The band corresponds

to the span of results (NLx-NLO) obtained if one chooses xµ = 0.5 and xµ = 2.0.

6.2 Splitting functions

The extraction of splitting functions is carried much in the same way as in the one-channel

case described in [23, 11]. There a special (infrared) inhomogeneous term was included

in the equation for the Green function such as to ensure that the resulting integrated

gluon distribution satisfies xg(x, µ2) = 1, independently of x, for µ2 set equal to some

given Q2. With that inhomogeneous term fixed, the xPgg(x,Q2) splitting function was

then obtained as ∂
∂ ln x

∂
∂ ln µ2 xg(x, µ2)|µ2=Q2. In the matrix case, we have a 2-component

vector of inhomogeneous terms: we can choose it such that xq(x, µ2) = 0, xg(x, µ2) = 1

for µ2 = Q2, in which case we obtain
(

xPqg

xPgg

)
=

∂

∂ ln x

∂

∂ ln µ2

(
xq(x, µ2)

xg(x, µ2)

)∣∣∣∣∣
µ2=Q2

. (6.2)

Alternatively we can set the inhomogeneous terms so as to ensure that q(x, µ2) = 1,

g(x, µ2) = 0 for µ2 = Q2 and we then extract Pqq and Pgq.

The matrix of effective splitting functions as determined with this method is shown

in figure 5, for both our kernels and with a scale Q ≃ 6GeV, giving αs(Q
2) = 0.2. For

– 28 –



J
H
E
P
0
8
(
2
0
0
7
)
0
4
6

reference we plot also the exact NLO splitting functions and our previous results for the

single-channel evolution. Considering first the gg channel, the results are rather similar

to the old ones, and in particular maintain the characteristic dip [13] around x = 10−3

that has been seen also by the authors of [16]. This dip is present also in the gq channel,

and indeed the gq channel is rather similar in a range of features to the gg channel, which

is natural since it is largely driven by the summation of the g → g branching. Among

the common features is the slight but noticeable difference compared to the NLO splitting

functions at moderate x (x & 0.1). The detailed origin of this characteristic is not really

understood, but may well be connected with the fact that the various pieces of the NLO

gg splitting function are effectively placed in different parts of our evolution kernel, and

then subjected to non-trivial (higher order) non-linear effects in their recombination into

the final effective splitting function.14

Concerning the scale dependence of the Pgj channels, as for the Green function, it

grows significantly towards small x, and again this is a sign of scale dependence of the

small-x intercept. One notes non-negligible scale dependence also at moderate x. Generally,

down to moderately small x, the scale dependence of the NLx-NLO splitting functions (all

channels) is rather similar to that (not shown) of the plain NLO splitting functions.

The two Pqj channels differ fundamentally from the Pgj channels in that they are

non-zero at small x starting only at NLx and at NLO. Thus there is a sense in which

our NLx-NLO treatment is effectively a leading order treatment for these channels, at

least as concerns their normalisation (the small-x growth is driven by iterations in the

gluon channel, so one expects this to be under better control). This is visible in the much

larger scale dependence for these channels. They also have some (modest) sensitivity to

the difference between the NLx-NLO and NLx-NLO+ kernels, whereas in the Pgj channels

there was almost no sensitivity to this difference (even though the difference is NLx in all

channels). A general feature of the Pqj splitting functions is that they are rather similar

to the NLO splitting functions (more so than in the gluon channel). In particular, though

like the Pgj splitting functions they have a dip around x = 10−3, this dip is considerably

shallower. The conclusion here is that the NLO Pqj splitting functions can probably be

considered a good approximation to the full splitting functions for x as low as 10−4.

An important cross-check of the methods used to extract the splitting functions is

that the results should be independent (modulo higher-twist contributions) of the infrared

regularisation of the coupling, i.e. independent of the scale µ0 below which the coupling is

set to zero. To this end we have extracted the splitting functions with µ0 increased from

0.75GeV to 1GeV (corresponding to reducing αs(µ0) from 0.58 to 0.45) and find that the

results change only by a few percent.15 As in previous work [23, 11] we find that these

factorization violations scale roughly as 1/Q rather than as 1/Q2, a characteristic perhaps

attributable to resummation effects, which could quite conceivably modify typical collinear

1/Q2 power-suppressed effects such that they become 1/Q2−2γ with an effective γ ≃ 1/2.

14The greater similarity between the large-x scheme B kernel and the NLO results is an artefact related

to the different nf values used in the old scheme B results and the new matrix evolution.
15One may also reduce µ0, however for µ0 . 0.6 GeV, αs(µ0) then becomes so large that numerical

instabilities develop, and it becomes impossible to extract meaningful results.
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NLx-NLO NLx-NLO+

αs Q [GeV]
∑

j Γjq(1)
∑

j Γjg(1)
∑

j Γjq(1)
∑

j Γjg(1)

0.20 6 0.0079 -0.0059 0.0074 -0.0055

0.15 20 0.0021 -0.0015 0.0018 -0.0012

0.10 220 0.00012 -0.00003 0.00006 0.00002

Table 2: Momentum sum-rule violation in the NLx-NLO and NLx-NLO+ models for three values

of αs. The numerical uncertainty is roughly ±1 on the last digit of each result.

We close this section by showing in table 2 the degree of momentum sum-rule (MSR)

violation in the splitting functions for three values of αs. From just a small number of

values it is difficult to establish the exact scaling law,16 and in particular it is difficult

to determine the relative admixture of higher-twist and perturbative components in the

MSR violations. Nevertheless, one sees that the MSR violation vanishes very rapidly as αs

decrease, suggesting that a significant component of it is non-perturbative in origin. This

conclusion is borne out by studies which show that the amount of MSR violation depends

somewhat also on µ0, the infrared cutoff scale for the coupling.

7. Discussion

We have proposed here a matrix evolution equation for the flavour singlet, unintegrated

quark and gluon densities, which generalizes the DGLAP and BFKL equations in the

relevant limits.

The matrix approach (sections 2 and 3) is supposed to unify collinear and high-energy

factorizations in both partonic channels, and is not necessarily guaranteed to actually work,

because of the various crossed consequences that the above factorizations have: consider, for

instance, the anomalous dimension resummation formulae arising from k-factorization [5,

8] and the γ ↔ 1 + ω − γ symmetry of the BFKL kernel [9, 10] arising from collinear

factorization. It is therefore a nontrivial result of this paper that our resummed splitting

functions do satisfy collinear factorization in matrix form, as shown in sections 4 and 6.

In this respect, our approach defines, by the matrix evolution, some unintegrated densities

that are appropriate both in the collinear and in the small-x limits. It would be interesting

to explore the relationship of such explicit construction with alternative studies [22, 24].

Furthermore, we want to incorporate exact low-order anomalous dimensions in our

matrix kernel, say in the MS scheme. We find, in this context, a new kind of consistency

relations on the kernels, due to a possible clash of exact low-order expressions with a

novel NLx resummation formula for Γgq, arising in the matrix evolution (section 4). We

prove such relations to be satisfied by our construction in the MS scheme at NLO, but

marginally violated by nf/N2
c -suppressed terms at NNLO. We are thus able to complete

our construction with exact NLO anomalous dimensions and NLx kernel, and we postpone

16Limits on the available numerical accuracy make it difficult to obtain reliable estimates of the MSR

violations for smaller values of αs, because as αs decreases one needs ever higher relative accuracy to

accurately determine the rapidly vanishing MSR-violating component.
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the analysis of the NNLO accuracy, which is however nearly incorporated (in the NLx

approximation) in our NLO+ version.

The frozen-αs features of our matrix model are characterized by the previously men-

tioned resummation formulae of section 4, and by the hard Pomeron exponent and effective

eigenvalue functions of section 5. One should notice the basic continuity of our matrix ap-

proach with the single-channel case in the nf = 0 limit, and the corresponding agreement of

the leading effective eigenvalue function with the ABF approach. Additionally, we provide

here the subleading effective eigenvalue at nf = 4, corresponding to the γ− eigenvalue of

the anomalous dimension.

We are finally able to provide the whole matrix of resummed splitting functions in

section 6. Roughly speaking, the outcome shows that resummation effects are small in the

Pqa entries up to x-values as small as 10−4, while the shallow dip is the main qualitative

feature of both Pga entries, with resummation effects starting below x ≃ 10−3.

We note that the above results are in the MS scheme up to NLO (including approxi-

mately NNLO in their NLO+ version), but generally differ from it at higher orders. How-

ever, resummation effects [8] in the scheme change have been studied in the single-channel

case [14] and turn out to be of the order of the scale uncertainty. For this reason we believe

that our results can be safely used in the study of structure functions and other cross-

sections, by supplementing them with the corresponding coefficient functions or impact

factors.

Acknowledgments

We wish to thank Guido Altarelli, Richard Ball, Stefano Catani, Stefano Forte and Al

Mueller for various conversations on topics related to this paper. We are grateful to the

Galileo Galilei Institute for Theoretical Physics in Arcetri for hospitality during the work-

shop on “High Density QCD”, while part of this work was being done. This paper is

supported in part by a PRIN grant from MIUR (Italy) and by the French Agence Na-

tionale de la Recherche, grant ANR-05-JCJC-0046-01. A.M.S has been supported by the

Polish Committee for Scientific Research grant No. KBN 1 P03B 028 28.

A. Recursive expressions for the anomalous dimensions

In this appendix we show how eqs. (2.20) are obtained. Let us first rewrite eqs. (2.18), (2.19)

in γ-space, by noting that γ = ∂log Q2:

γ fi(γ, ω) = Fi(γ, ω) = Γij(ω)fj(γ, ω) + h.t. (A.1)

where “h.t.” stands for higher-twist contributions characterised by being regular at γ = 0.

It follows that, in matrix notation,

γ2f = γ(Γf + h.t.) = Γ(γf) + h.t. = Γ2f + h.t. (A.2)

and, by induction,

γnf = Γnf + h.t. , (A.3)
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Secondly, we consider eq. (2.17) and expand the matrix kernel K in powers of gamma

(according to the notations following eq. (2.11)), obtaining

F =

(
∑

m=0

K
(m)γm−1

)
F+F source =

∑

m=0

K
(m)γmf +F source =

∑

m=0

K
(m)Γmf +h.t. , (A.4)

By comparing eqs. (A.1) and (A.4) we derive the implicit equation

Γ =
∑

m=0

K
(m)Γm , (A.5)

which allows us to determine the effective anomalous dimension matrix Γ in terms of the

matrix kernel K.

It is now straightforward to compute the perturbative coefficients Γn defined in

eq. (2.12). By expanding eq. (A.5) to first order in α̂ yields (m = 0)

α̂Γ0 = α̂K
(0)
0 (A.6)

from which eq. (2.20a) follows. By expanding eq. (A.5) to second order in α̂ yields (m ≤ 1)

α̂Γ0 + α̂2Γ1 = α̂K
(0)
0 + α̂2

K
(0)
1 + α̂K

(1)
0 α̂Γ0 . (A.7)

At frozen coupling, the operators K
(1)
0 and α̂ commute. By then collecting the O

(
α̂2

)
terms

and remembering that Γ0 = K
(0)
0 we get

α̂2Γ1 = α̂2(K
(0)
1 + K

(1)
0 K

(0)
0 ) (A.8)

from which eq. (2.20b) follows. A similar iteration procedure produces eq. (2.20c) and

higher orders.

In the running coupling case, we have an additional commutator term starting at

second order, namely

α̂[K
(1)
0 , α̂]K

(0)
0 . (A.9)

By using the expansion

α̂ = α̂µ − β0α̂
2
µ log k2

µ2 + O
(
α̂3

µ

)
, (A.10)

the commutator reads

[K
(1)
0 , α̂] = −β0α̂

2[K
(1)
0 , log k2

µ2 ] + O
(
α̂3

)
, (A.11)

thus producing, by eq. (A.9), a contribution of order α̂3 to the anomalous dimension matrix.

Note however that the NLx term of order α3
s/ω

2 vanishes, because the gg entry of K
(1)
0 has

no leading 1/ω term.

Extending the above procedure to higher orders, we see that at each order (say NnLO)

the anomalous dimension gets a new term K
(0)
n but also a series of other terms which are

combinations of the anomalous dimensions at the lower orders < n.
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B. Splitting functions and anomalous dimensions

Singlet anomalous dimensions and splitting functions at lowest order appear in many of

our formulas. The former are given by (Tf ≡ Trnf )

Pqq,0(z) = CF

[
2

(1 − z)+
− 1 − z +

3

2
δ(1 − z)

]
(B.1)

Pqg,0(z) = 2Tf [z2 + (1 − z)2] (B.2)

Pgq,0(z) = CF
1 + (1 − z)2

z
(B.3)

Pgg,0(z) = 2CA

[
1

z
+

1

(1 − z)+
− 2 + z − z2

]
+

11CA − 4Tf

6
δ(1 − z) . (B.4)

The anomalous dimensions, i.e., the Mellin transforms of the splitting functions, are given

by

Γqq,0(ω) = CF

[
2ψ(1) − 2ψ(ω + 1) −

1

ω + 1
−

1

ω + 2
+

3

2

]
(B.5)

Γqg,0(ω) = 2Tf

(
1

ω + 1
−

2

ω + 2
+

2

ω + 3

)
(B.6)

Γgq,0(ω) = CF

[
2

ω
−

2

ω + 1
+

1

ω + 2

]
(B.7)

Γgg,0(ω) = 2CA

[
1

ω
+ ψ(1) − ψ(ω + 1) −

2

ω + 1
+

1

ω + 2
−

1

ω + 3
+

11

12

]
−

2Tf

3
. (B.8)

The gluon anomalous dimensions Γgq,0 and Γgg,0 are singular at ω = 0. The regular parts

are defined by subtraction of the ω-pole, namely

Agq(ω) ≡ Γgq,0(ω) −
2CF

ω
, Agg(ω) ≡ Γgg,0(ω) −

2CA

ω
. (B.9)

Their values at ω = 0 are




Γqq,0(0) Γqg,0(0)

Agq(0) Agg(0)


 =




0
4Tf

3

−3CF

2 −
11CA+4Tf

6


 . (B.10)

C. Kernels and characteristic functions

Our method of resumming energy-scale dependent terms relies on the introduction of im-

proved kernels whose characteristic functions17 χω(γ) are ω-dependent. In general such

characteristic functions are symmetric in the γ → 1 + ω − γ transformation and have the

following structure:

1

ω
χω(γ) = M(ω) [χL(γ) + χL(1 + ω − γ)] , (C.1)

17Apart from the (running) coupling factors, we always deal with scale-invariant kernels.
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where the left-projection χL contains collinear (and possibly higher-twist) singularities only

in the half-plane ℜ(γ) ≤ 0.18

The ω-dependence in the argument of the second χL term imposes kinematical con-

straints on the longitudinal momentum fraction variable z conjugated to ω. In fact, by

denoting by zM(z) and KL the inverse Mellin transforms of M and χL respectively, we

have

K(z;k,k′) ≡
1

k2

∫
dω

2πi
z−ω

∫
dγ

2πi

(
k2

k′2

)γ
1

ω
χω(γ) = z′M(z′)KL(k>, k<) , (C.2)

where k< ≡ min(k, k′), k> ≡ max(k, k′) and z′ ≡ z · max(1, k′2/k2). Since 0 < z′ < 1, the

kinematical constraint k′2 < k2/z follows.

The lowest-order matrix kernel K0 in (z,k)-space can be derived from eq. (3.2) and

reads

[α̂K0](z; k, k′) = α̂(q2)

(
0 0

0 2CAK0(z; k, k′)

)
(C.3)

+ α̂(k2
>)

[
z′

(
Pqq,0(z

′) Pqg,0(z
′)

Pgq,0(z
′) Pgg,0(z

′)− 2CA

z′

)
Kc(k, k′)+z′

(
0 ∆qg(z

′)Kht(k, k′)

0 0

)]

having defined

Kc(k, k′) ≡
1

k2
>

, (C.4)

Kht(k, k′) ≡
2

3

k2
<

k4
>

, (C.5)

∆qg(z) ≡ δqg 3(1 − z)2 . (C.6)

The terms in square brackets in eq. (C.3) correspond to the operator Kcoll introduced in

eq. (6.1). The action of the first term ∼ α̂(q2) on a test function f(x, k) is

∫ 1

x

dz

z

∫
dk′2 α̂(q2)K0(z; k, k′)f

(
x

z
, k′

)
(C.7)

≡

∫ 1

x

dz

z

∫
d2q

πq2
α̂(q2)

[
f

(
x

z
, |k + q|

)
Θ(k2 − zk′2) − Θ(k − q)f

(
x

z
, k

)]
,

while the action of the terms ∼ α̂(k2
>), e.g. the higher-twist one, is

∫ 1

x

dz

z

∫
dk′2 α̂(k2

>)z′∆qg(z
′)Kht(k, k′)f

(
x

z
, k′

)
(C.8)

≡

∫ 1

x

dz

z

{∫ k2

0
dk′2 α̂(k2)z∆qg(z)+

∫ k2/z

k2

dk′2 α̂(k′2)z
k′2

k2
∆qg

(
z
k′2

k2

)}
Kht(k, k′)f

(
x

z
, k′

)
.

18Note that in this article we adopt the asymmetric — upper in the notations of [11] — energy scale

s0 = k2, since k2/s is the correct Bjorken scaling variable in the collinear limit k ≫ k′ we are interested to.

This causes the ω-shift to apply only on the (1−γ) argument of χL and asymmetric kinematical constraints

in the z variable as shown below.
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In order to obtain K1(z; k, k′) according to eq. (3.22), we start by computing the first

term proportional to χc → Kc. The inverse Mellin transform of Γ
(MS)
1 is just the matrix of

the two-loop singlet splitting functions in the MS-scheme [27]. The inverse Mellin transform

of the subtraction K
(1)
0 K

(0)
0 can be either computed by inverting the expressions listed in

eq. (3.34), or by convolution in z-space of the corresponding factors. Here we choose the

second method, by computing first the analytic expressions of all factors in eq. (3.34) and

then the numerical convolution of the ensuing functions. We already obtained the Mellin

transform of ∆qg in eq. (C.6); the transforms of the Γij factors are just the one-loop splitting

functions reported in eqs. (B.5), (B.8); the remaining functions are listed below:

∫
dω

2πi
z−ω cc(ω) = z , (C.9)

∫
dω

2πi
z−ω 2CA

ω
c0(ω) = 2CA log(1 − z) , (C.10)

∫
dω

2πi
z−ω χht(0, ω) =

2

3

[
δ(1 − z) + z2

]
. (C.11)

Finally, we need the inverse Mellin transform

∫
dω

2πi
z−ω

(
1

ω
−

2

1 + ω

)
= 1 − 2z , (C.12)

and the kernel

K1,reg ≡ K̃1 − χ̃
(0)
1 Kc, (C.13)

whose ω-shifted form occurs directly in eq. (3.27), and has characteristic function

χ1,reg ≡ χ̃1 − χ̃
(0)
1 χc (C.14)

= χ1 − χrun
1 − χ0

(
χ̇0 + χc

Agg(0)

2CA

)
−

CF

CA
χc

(
χc

Γqg,0(0)

2CA
+ χht

δqg

2CA

)
− χ̃

(0)
1 χc .

The numerical coefficients Agg(0),Γqg,0(0) can be found in eq. (B.10), δqg ≡ ∆qg(0) in

eq. (3.8) and χ̃
(0)
1 in eq. (3.33). Furthermore, the computation of the kernel K1,reg requires

the subtraction from the NLx BFKL kernel [6, 7] of the running coupling terms and of

additional kernels corresponding to the characteristic functions on the r.h.s. of eq. (C.14).

They are given by

χc →
1

k2
>

, (C.15)

χ0χ̇0 → −
1

4|k2 − k′2|

[
log2 k′2

k2
+ 4Li2

(
1 −

k2
<

k2
>

)]
, (C.16)

χ0χc →
1

k2
>

log

(
k2

>

k2
<

− 1

)
−

1

k2
<

log

(
1 −

k2
<

k2
>

)
, (C.17)

χ2
c →

1

k2
>

(
log

k2
>

k2
<

+ 2

)
, (C.18)

χcχht →
1

k2
>

(
1 −

1

3

k2
<

k2
>

)
. (C.19)
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The resulting expression for K1,reg is

K1,reg(k, k′) =
1

4

{(
67

9
−

π2

3
−

20Trnf

9CA

)
〈K0〉(k, k′) +

1

k′2 + k2

[
π2

3
+ 4Li2

(
k2

<

k2
>

)]
+

−
1

32

(
1 +

2Trnf

C3
A

)[
2

k′2
+

2

k2
+

(
1

k′2
−

1

k2

)
log

(
k2

k′2

)]
+

−

[
3 +

(
3

4
−

(k′2 + k2)2

32k′2k2

)] (
1 +

2Trnf

C3
A

) ∫ ∞

0

dy

k2 + y2k′2
log

∣∣∣∣
1 + y

1 − y

∣∣∣∣

}
+

+
3

2
ζ(3)δ(k2 − k′2) +

4Li2(1 − k2
</k2

>)

|k′2 − k2|
+

− 4
Agg(0)

2CA
sgn(k2 − k′2)

(
1

k2
log

|k′2 − k2|

k′2
−

1

k′2
log

|k′2 − k2|

k2

)
+

−
CF

CA

1

k2
>

[
Γqg,0(0)

2CA

(
log

k2
>

k2
<

+ 2

)
+

δqg

2CA

(
1 −

1

3

k2
<

k2
>

)]
− χ̃

(0)
1

1

k2
>

. (C.20)

where 〈K0〉 denotes the azimuthal average of the LLx BFKL kernel whose action on a test

function f(k) is given by

[〈K0〉f ](k) =

∫
dk′2 1

|k′2 − k2|

[
f(k′) −

2k2
<

k′2 + k2
f(k)

]
. (C.21)

Finally, we provide the eigenvalue function of K1,reg with kinematical constraints,

which is given by χ1,reg,L(γ) + χ1,reg,L(1 + ω − γ), and occurs directly in eq. (3.27). The

left projection χ1,reg,L of the eigenvalue function (C.14) can be computed starting from the

expression of χ̃1L in eq. (A.13) of ref. [11] and noticing that:

(i) here we have more terms to subtract, namely those proportional to CF /CA and χ̃
(0)
1 ;

(ii) in ref. [11] we subtracted the nf -part of the double pole by letting Agg(0) →

2CAA1(0) ≡ Agg(0) + (CF /CA)Γqg,0(0), while here we keep only Agg(0) in front

of χ0χc since the nf -dependent double pole is subtracted by the Γqgχ
2
c term.

Therefore, in order to complete the calculation we need the left projections of the

following kernels:

[χ2
c ]L(γ) = [χcL(γ)]2 + 2χcL(γ) =

1

γ2
+

2

γ
, (C.22)

[χcχht]L(γ) = χcL(γ) −
1

2
χhtL(γ) =

1

γ
−

1

3(1 + γ)
. (C.23)
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The final result is

χ1,reg,L(γ) = [ψ(1) − ψ(γ)]

[
ψ′(γ) −

Agg(0)

2CA
χc(γ) +

67

36
−

π2

12
−

5

18

nf

CA

]

+
1

2
ψ′′(γ) + Π(γ) − ΦL(γ) +

π2

8

[
ψ

(
1 + γ

2

)
− ψ

(
γ

2

)]
+

3

4
ζ(3)

+
1

32

{
−3M(γ) +

(
1 +

nf

C3
A

)[
1

4

(
1

γ2
−

1

(1 − γ)2

)
−

1

2

(
1

γ
−

1

1 − γ

)

+
1

32

(
M(γ + 1) + M(γ − 1)

)
−

11

16
M(γ)

]}

−
CF

2C2
A

[
Γqg,0(0)

(
1

γ2
+

2

γ

)
+ δqg

(
1

γ
−

1

3(1 + γ)

)]
−

χ̃
(0)
1

γ
, (C.24)

where

Π(γ) ≡

∫ 1

0
dt tγ−1 Li2(1) − Li2(t)

1 − t
=

∞∑

n=0

ψ′(n + 1)

n + γ
, (C.25)

ΦL(γ) ≡
∞∑

n=0

(−1)n
ψ(n + 1 + γ) − ψ(1)

(n + γ)2
, (C.26)

M(γ) ≡
1

γ − 1
2

[
ψ′

(
1 + γ

2

)
− ψ′

(
γ

2

)
+ ψ′

(
1

4

)
− ψ′

(
3

4

)]
. (C.27)

The explicit form of K1,reg in (k, z) space is obtained by use of eq. (C.2), or by introducing

the kinematical constraints on eq. (C.20) directly. The final form of K1(z;k,k′) follows

from eq. (3.27).
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